

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIEN	NCE
QUALIFICATION CODE: 07BOSC	LEVEL: 6
COURSE CODE: ORC601S	COURSE NAME: ORGANIC CHEMISTRY 1
SESSION: JUNE 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

	FIRST OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER(S)	MR. DAVID NANHAPO
MODERATOR:	PROF. HABAUKA KWAAMBWA

	INSTRUCTIONS
1.	Answer ALL the questions.
2.	Write clearly and neatly.
3.	Number the answers clearly
4.	All written work must be done in blue or black ink and sketches
	can be done in pencil
5.	No books, notes and other additional aids are allowed

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENTS

pKa Chart and Periodic Table

THIS QUESTION PAPER CONSISTS OF 14 PAGES

(Including this front page, pKa Chart and Periodic Table)
Page 1 of 14

QUESTION 1: Multiple Choice Questions

[50]

- There are 25 multiple choice questions in this section. Each question carries
 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.
- 1.1 Rank the acidity of the labelled protons in the following molecule from the lowest to the highest acidity.

$$H_a$$
 O H_b O O O

- A. Ha; Hb; Hc
- B. Hb; Hc; Ha
- C. Hc; Ha; Hb
- D. Hb; Ha; Hc
- 1.2 List the following compounds in the order of increasing acidity.

A. ^

B. JOH

C. CH₂OH

D. F. O

- A. A; B; C; D
- B. A; C; B; D
- C. A; C; D; B
- D. D; C; A; B
- 1.4 What is the IUPAC name for the structure below?

- A. 3-ethyl-4-methyl-2-hexanol
- B. 2-ethyl-1,3-dimethyl-1-heptanol
- C. 4-ethyl-3,5-dimethyl-5-hexanol
- D. (1-hydroxyethyl)-3-methylhexane

1.4 Designate the following compound as R or S configuration.

- A.R
- B. S
- C. R,S
- D. None of the above
- 1.5 Does the equilibrium of this reaction lie to the left or right?

- A. Left
- B. Right
- C. It cannot be determined
- D. The forward and reverse reactions are equally favoured.
- 1.6 Determine the product(s) in the reaction below.

1.7 Which compound would you predict to be highest in energy?

CI
$$\xrightarrow{\text{step 1}}$$
 + $\xrightarrow{\text{CI}}$ $\xrightarrow{\text{H}_2\text{O}}$ $\xrightarrow{\text{OH}_2}$ $\xrightarrow{\text{CI}}$ OH + HCI $\xrightarrow{\text{step 3}}$ A B C D

- A. A
- A. A
- B. B
- C. C
- D. D

1.8 How many stereogenic centres does the addictive drug heroin have?

- A. 4
- B. 5
- C. 6
- D. 7

1.9 In question 1.7 above, what kind of reaction does the conversion of A to D represent?

- A. Addition
- B. Elimination
- C. Subtraction
- D. Substitution

1.10 Which of the following statements is (are) true about the energy diagram drawn below?

- A. The reaction mechanism has two steps
- B. b labels a transition state.
- C. The overall reaction is endothermic
- D. The conversion of **a** to **b** is faster than the conversion of **b** to **c**.

1.11 What is the IUPAC name for the structure below?

- A. (R)-3-chloro-6-ethyloctane
- B. (S)-3-chloro-6-ethyloctane
- C. (S)-6-chloro-3-ethyloctane
- D. (R)-6-chloro-3-ethyloctane
- 1.12 Which of the following compounds is most likely to show first-order kinetics in a substitution reaction?

- A. A
- B. B
- C. C
- D. D
- 1.13 Given the following substitution reaction, what would the effect be of changing the solvent from ethanol to DMSO?

$$CH_3(CH_2)_5Br + NaOH \longrightarrow CH_3(CH_2)_5OH + Br$$

- A. The rate would increase because S_N2 reactions favour a polar aprotic solvent
- B. The rate would decrease because S_N1 reactions favour a polar protic solvent
- C. The rate would not be affected by the change in solvent.
- D. The potential change cannot be predicted

1.14 Which of the following anions is the best leaving group?

- A) NH_2^- B) Cl^- C) CH_3^-
- D) OH

- A. A
- B. B
- C. C
- D. D

1.15 Which of the following is the strongest nucleophile in polar protic solvents?

- A) F^- B) CH_3O^- C) HO^- D) CH_3S^-
- A. A
- B. B
- C. C
- D. D

1.16 Which of the following carbocations is the most stable?

A

B

C

D

- A. A
- B. B
- C. C
- D. D

1.17 Which alkyl halide (A-C) would give the following alkene (Y) as the only product in an elimination reaction?

В

C

- A. A
- B. B
- C. C
- D. A and B

- 1.18 Which of the following statements is (are) true about an E2 elimination reaction?
 - A. It is fastest with 3° Halides
 - B. It exhibits second-order kinetics
 - C. A better leaving group should make a faster reaction
 - D. All of the above are true
- 1.19 A tertiary halide reacts with a weak base and nucleophile. The reaction will proceed via which of the following mechanism(s)?
 - $A. S_N 1$
 - B. S_N1 and E1
 - C. E2
 - D. S_N1 and E2
- 1.20 Give the IUPAC name for the following compound.

- A. (Z)-1-bromo-2-chloro-2-ethyl-4-methyl-1-pentene
- B. (E)-1-bromo-1-chloro-2-ethyl-4-methyl-2-pentene
- C. (Z)-1-bromo-1-chloro-2-ethyl-4-methyl-1-pentene
- D. (E)-1-bromo-1-chloro-2-ethyl-4-methyl-1-pentene
- 1.21 Which of the following reaction conditions would result in the anti-Markovnikov addition to the alkene?
 - A) H₂O/H⁺

- B) HBr C) HCl D) [1] BH₃; [2] H₂O₂/OH⁻
- 1.22 Give the IUPAC name of the following compound.

$$CH_3C(CH_3)_2CH_2C = CCH_2CH(CH_2CH_3)CH_3$$

- A. 2,2,7-trimethyl-4-nonyne
- B. 2,2,7-trimethyl-4-decyne
- C. 3,3,7-trimethyl-4-decyne
- D. 2,2,6-trimethyl-4-undecyne

1.23 What is the product of the following reaction?

A. NH₂ B. C. D.

1.24 How many peaks could theoretically be observed in the ¹H NMR signal(s) for each of the indicated atoms?

A. a: 7; b: 4; c: 3; d: 3

B. a: 7; b: 3; c: 3; d: 3

C. a: 7; b: 4; c: 2; d: 4

D. a: 7; b: 4; c: 3; d: 4

1.25 Which of the following is the correct structure for 1-bromo-2,4-dimethoxybenzene?

MeO Br MeO Br MeO OMe OMe OMe OMe OMe

SECTION B:

[50]

QUESTION 2

[10]

(2)

2.1 Show with arrows, how the following products are formed.

2.2 Assign R and S configuration to all possible stereoisomers of 1-Bromo-2-methylcyclopentane. (8)

QUESTION 3

[10]

3.1 Name and label all the functional groups in the structure. Be sure to indicate primary (1°), secondary (2°) or tertiary (3°), where appropriate. (4)

3.2 Draw bond-line structures of the following molecules:

(6)

- a) 2-chloro-1, 7, 7-trimethylbicyclo [2.2.1] heptane
- b) 3-ethyl-6-methyl-5-propylnonane
- c) 2, 6-dimethyl-4-(2-methylpropyl)decane

(12)

4.1 Predict the product(s) of the following reaction

d)
$$H_2SO_4$$

OI	JEST	IO	NI 5	
U	JESI	IU	C VI	

[10]

5.1 Assign formal the charge to each atom in the following structure:

(4)

5.2 Give (i) a reaction equation and (ii) full mechanism for the acid-catalyzed (HCl) addition of water to 1-methyl-1-cyclopentene. (6)

QUESTION 6

[8]

An Unknown compound X has the molecular formula $C_6H_{14}O$. X shows a peak in its IR spectrum at 3200-3600 cm⁻¹. The ¹H NMR Spectral data of X are given below. What is the most likely Structure of X?

absorption	δ	H ratio
singlet	1.0	9
doublet	1.2	3
singlet	3.0	1
quartet	3.5	1

END OF EXAMINATION QUESTIONS

¹H NMR SPECTRAL DATA

Characteristic Chemical Shifts of Common Types of Protons

Type of proton	Chemical shift (ppm)	Type of proton	Chemical shift (ppm)
С-н sp³	0.9–2	C=C sp ²	4.5–6
 RCH₃ R₂CH₂ R₃CH 	~0.9 ~1.3 ~1.7	—Н	6.5–8
Z C	1.5–2.5	O III	9–10
—C≡C−H	~2.5	R_C OH	10–12
Sp^3 Z Z = N, O, X	2.5–4	RO—H or R—N—H	1–5

Important IR Absorptions

•••	iportant in Absorptions	
Bond type	Approximate ν̄ (cm ⁻¹)	Intensity
O-H	3600–3200	strong, broad
N-H	3500–3200	medium
C-H	~3000	
 C_{sp³}-H 	3000-2850	strong
 C_{sp}²-H 	3150-3000	medium
 C_{sp}-H 	3300	medium
C≡C	2250	medium
C≡N	2250	medium
C=O	1800-1650 (often ~1700)	strong
C=C	1650	medium
	1600, 1500	medium

helium 2 4.0026	ة <u>0</u>	<u>o</u>	.180	ნ დ	_	.948	pton 36	7	3.80	non 75	Q	1.29	40u		221				
ed T ,4			+						_						_				
			-		ರ				_						_				
	oxygen 8	0	15.999	sulfur 16	ഗ	32.065	selenium 34	Se	78.96	tellurium 52	P	127.60	polonium 84	Po	[209]				
	nitrogen 7	Z	14.007	phosphorus 15	<u>_</u>	30.974	arsenic 33	As	74.922	antimony 51	Sp	121.76	bismuth 83	<u></u>	208.98				
	carbon 6	ပ	12.011	14	S	28.086	germanium 32	Ge	72.61	.E. 20	S	118.71	lead 82	РЬ	207.2	unundnadium	114		[289]
	boron 5	$\mathbf{\omega}$	10.811	auminium 13	4	26.982	gallium 31	Ga	69.723	indium 49	_	114.82	thallium 81	F	204.38				
'							zinc 30	Zn	62.39	cadmium 48	ပ္ပ	112.41	mercury 80	HOL	200.59	unupinm	112	on O	[277]
						- 1		CC							_			_	_
						- 1		Z				- 1				_	-		
								ပ္ပ											
						ŀ		Fe	-			\dashv			\dashv	_			
						ŀ		Z	_			-			_				
						- 1		_ ပ	_			_			_				
						+		>	\dashv			\dashv			\dashv	0,			\dashv
						-		F	_			_			_	_			_
							scand 21	လွ	44.9	33 SE	<u>></u>	88.9	-		-	_			[562
_													57-70	*		00700	201-68	*	
	beryllium 4	B	9.0122	12	Mg	24.305	20	Ca	40.078	strontium 38	ട്	87.62	56	Ba	137.33	radium	2 (Z Y	[326]
hydrogen 1.0079	mmin 3		6.941 sodium	11	Na	22.990	19	¥	39.098	rubidium 37	8	85.468	caesium 55	Cs	132.91	francium	ر اه ا	_	[223]
												_							

20	nthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
27		28	29	09	6	62	63	2	65	99	29	89	69	2
ĭ	~	ပ္ပ	<u>ڄ</u>	Š	Pm	Sm	Ш	gg	욘	2	우	ш	E	Zp
38.6	-	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium	E	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
83		8	91	95	93	94	92	96	97	86	66	100	101	102
1	U	F	Ра	>	S	Pa	Am	CH	器	ن	ЕS	Fm	Mo	2
227		232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Page 14 of 14